
Stephen Checkoway

Programming Abstractions
Lecture 4: Environments and Closures

Local variables
(let ([id1 s-exp1] [id2 s-exp2]…) body)

let enables us to create some new bindings that are visible only inside body

(let ([x 37] ; binds 37 to x  
 [y (foo 42)]) ; binds the result of (foo 42) to y  
 (if (< x y)  
 (bar x)  
 (bar y)))

x and y are only bound inside the body of the let expression

That is, the scope of the identifiers bound by let is body

Example

(define (sum-of-odd lst)

 (if (empty? lst)

 0

 (let ([head (first lst)]

 [tail (rest lst)])

 (if (odd? head)

 (+ head (sum-of-odd tail))

 (sum-of-odd tail)))))

Using variables

Recall that when Racket evaluates a variable, the result is the value that the

variable is bound to

‣ If we have (define x 10), then evaluating x gives us the value 10

‣ If we have (define (foo x) (- x y)), then evaluating foo gives us the

procedure (λ (x) (- x y)) along with a way to get the value of y

Racket needs a way to look up values that correspond to variables: an

environment

Environments

Environments are mappings from identifiers to values

There's a top-level environment containing many default mappings

‣ list ! #<procedure:list>  

(! is read as "maps to", #<procedure:xxx> is how DrRacket displays

procedures)

‣ + ! #<procedure:+>

Each file in Racket (technically, a module) has an environment that extends the

top-level environment that contains all of the defines in the file

Basic operations on environments

Lookup an identifier in an environment

Bind an identifier to a value in an environment

Extend an environment

‣ This creates a new environment with mappings from identifiers to values as

well as a reference to the environment being extended

‣ The extended and original environment may both contain mappings for the

same identifier

Modify the binding of an identifier in an environment (we will avoid doing this in

this course)

Looking up an identifier in an environment

If an identifier has been bound in the current environment, its value is returned

Otherwise, if the current environment extends another environment, the

identifier is (recursively) looked up in the other environment.

Otherwise, there's no binding for the identifier and an error is reported

Consider the environments where (A → B means A extends B).

 

What is the value of looking up count in the left-most environment?

A. Error: count is undefined in that environment

B. 3

C. A procedure

8

Identifier Value

+ #<procedure:+>

count #<procedure>

max #<procedure>

… …

Identifier Value

name "steve"

count 3

max 27

Identifier Value

w -8

x 22

y 19

z 6

Adding a new mapping to an environment
(define identifier s-exp)

define will add identifier to the current environment and bind the value

that results from evaluating s-exp to it

In any environment, an identifier may only be defined once

‣ except in the interpreter which lets you redefine identifiers

Adding a new mapping to an environment
(define (identifier params) body)

Recall that (define (foo x y) body) is the same as  

(define foo (λ (x y) body))  

in that it binds the value of the λ-expression, namely a closure, to foo

A closure keeps a reference to the current environment in which the λ-

expression was evaluated

Extending an environment
Calling a closure

Calling a closure extends the environment of the closure with the values of the

arguments bound to the procedure's parameters

(define (sum lst)  
 (cond [(empty? lst) 0]  
 [else (+ (first lst) (sum (rest lst)))])) 
 
(define (average lst)  
 (/ (sum lst) (length lst)))  
 
Calling (average '(1 2 3)) extends the environment of average (namely the

module's environment which contains mappings for sum and average) with the

mapping lst ! '(1 2 3) and runs average with that environment

Example bindings
Shadowing a binding

(define (sum lst)  
 (cond [(empty? lst) 0]  
 [else (+ (first lst) (sum (rest lst)))])) 
 
(define (foo sum x y)  
 (average (list sum x y)))  
 
(define (average lst)  
 (/ (sum lst) (length lst)))  

Inside the body of foo, sum refers to the parameter 

Inside the body of average, sum refers to the procedure

Example bindings
Shadowing a binding

(define (sum lst)  
 (cond [(empty? lst) 0]  
 [else (+ (first lst) (sum (rest lst)))])) 
 
(define (foo sum x y)  
 (average (list sum x y)))  
 
(define (average lst)  
 (/ (sum lst) (length lst)))  

Inside the body of foo, sum refers to the parameter 

Inside the body of average, sum refers to the procedure

Example bindings
Shadowing a binding

(define (sum lst)  
 (cond [(empty? lst) 0]  
 [else (+ (first lst) (sum (rest lst)))])) 
 
(define (foo sum x y)  
 (average (list sum x y)))  
 
(define (average lst)  
 (/ (sum lst) (length lst)))  

Inside the body of foo, sum refers to the parameter 

Inside the body of average, sum refers to the procedure

Example bindings
Shadowing a binding

(define (sum lst)  
 (cond [(empty? lst) 0]  
 [else (+ (first lst) (sum (rest lst)))])) 
 
(define (foo sum x y)  
 (average (list sum x y)))  
 
(define (average lst)  
 (/ (sum lst) (length lst)))  

Inside the body of foo, sum refers to the parameter 

Inside the body of average, sum refers to the procedure

Extending an environment
(let ([id1 s-exp1] [id2 s-exp2]…) body)

let extends its environment

(let ([x 37] ; binds 37 to x  
 [y (foo 42)]) ; binds the result of (foo 42) to y  
 (if (< x y)  
 (bar x)  
 (bar y)))

x and y are only bound inside the body of the let expression

That is, the scope of the identifiers bound by let is body

(define (sum lst)

 (if (empty? lst)

 0

 (+ (first lst) (sum (rest lst)))))

(define (average lst)

 (/ (sum lst) (length lst)))

(let ([sum 10])

 (average (list 0 sum)))

In the body of average, while

computing 

(average (list 0 sum)),  

which of the following is

average's environment (an

arrow points at the environment

being extended)?

14

lst '(0 10) sum #<procedure>

average #<procedure>

Top-level environment

lst (list 0 sum) sum #<procedure>

average #<procedure>

Top-level environment

lst '(0 10) sum #<procedure>

average #<procedure>

Top-level environmentsum 10

A.  

B.  

C.

Example: Filtering a list
(filter pred lst)

filter takes a predicate (a 1-argument function that returns #t or #f) and a list

and returns a list as follows

‣ For each element x in lst, run (pred x)

‣ If (pred x) returns true (anything other than #f), add x to the list to return

Examples

‣ (filter positive? '(2 -3 4 5 -1 0)) => '(2 4 5)

‣ (filter (λ (s) (string-prefix? s "A"))  
 '("Adam" "Janet" "Alice")) => '("Adam" "Alice")

Passing a closure to filter

(define (filter pred lst)

 (cond [(empty? lst) empty]

 [(pred (first lst)) (cons (first lst)

 (filter pred (rest lst)))]

 [else (filter pred (rest lst))]))

(define (foo prefix lst)

 (filter (λ (s) (string-prefix? s prefix)) lst))

Modifying a binding

Scheme lets us modify a binding, but we're not going to do that

This type of side-effect makes reasoning about code much harder

